Preferred Practices in Master Data Management and Data Governance ImplementationHeading

Written by: Mohit SaghalWinston Hsiao, and Annette Wright

The amount of data that businesses generate every day is reaching stratospheric heights. Most industry pundits agree that, at the current rate of data creation, the total amount of data in the world will double every two years. What should you do? Many businesses are realizing that to keep on top of this data, outsourcing certain software or services is a necessity. Companies can use services like what is offered by https://kyligence.io/kyligence-cloud/; a big data platform offering data management and analytic services in the cloud. Forward-thinking executives recognize that this unprecedented data tsunami is a potential business gold mine. Mining for customer centricity, improving supply chain efficiencies, and reducing regulatory exposure are just a few of the benefits that data can deliver.

Extracting value from massive data volumes requires sophisticated analytics. The accuracy and reliability of analytics, in turn, depend largely on the quality of the raw data. This fundamental reality drives the increasingly common corporate mandate of implementing robust data management (mastering) and rigorous data governance (control). Both must coexist. If you believe in the fundamental management principles forged by Peter Drucker, W. Edwards Deming, Robert Kaplan, and others, you should add this mantra to your preferred practice portfolio: “You can’t control data that is yet to be mastered.”

Click here for the complete white paper: Preferred Practices in Master Data Management and Data Governance Implementation

Recent Posts

Enabling Digital Intelligence Through ThoughtSpot

Written by: Azmath Pasha, Chief Digital Officer, and Kireet Kokala, Cloud Delivery Leader Click here for the complete white paper: Enabling Digital Intelligence Though ThoughtSpot ThoughtSpot, a modern cloud analytics company makes it easy for business teams to ask questions while providing power and flexibility for data experts. While ThoughtSpot’s platform has been around for almost a decade, it has recently enjoyed a larger audience thanks in part to data intelligence solutions that are being pushed by Snowflake Data Cloud, AWS, Azure, Google Cloud Platform, and several others.

Intelligent Data Governance for AI in Financial Services

As data becomes increasingly strategic in the financial sector, traditional data governance approaches must evolve to handle massive data volumes, complex regulatory landscapes, and dynamic risk factors. Intelligent data governance leverages artificial intelligence and machine learning not just to manage data but to actively enhance quality, compliance, and decision-making processes. This guide presents a framework for intelligent data governance tailored for financial services, outlining how AI and ML transform oversight, risk management, and regulatory adherence.

Quantifying the Value of Data in Financial Services

In the financial services sector, data is a critical asset that drives profitability, risk management, regulatory compliance, and competitive edge. However, measuring its value remains challenging for many CFOs across sectors of the financial services industry regardless of organizational size or country of operations. CFOs rely on accurate data for forecasting, budgeting, and strategic planning. Quality data leads to better decision-making, optimized capital allocation, and swift responses to market changes. It is also vital for risk management, regulatory compliance (e.g., BCBS 239, Basel III, AML/KYC), and avoiding fines and reputational damage. “Fit for Business Use” data also supports customer retention, personalized services, and improved revenue stability. Data-savvy CFOs leverage insights for long-term growth.

7 Step Guide to Intelligent Data for Smarter AI

In a world driven by digital innovation, artificial intelligence (AI) is increasingly becoming a cornerstone of business outcomes. However, AI’s ability to deliver meaningful, reliable insights hinges on the quality of the data it processes. Organizations that prioritize intelligent data management can unlock smarter AI capabilities, driving transformation and competitive advantage.

Untangling Data Quality & Data Mastering: A Guide to Making the Right Choice

> Click here for the full white paper. In today’s data-driven world, where AI and generative AI are rapidly transforming industries, businesses depend heavily on accurate, consistent, and trustworthy data to fuel these innovations. AI-driven initiatives cannot succeed without high-quality, mastered data that ensures reliability and trust in AI-generated insights and outcomes. However, the lines between data quality and data mastering are often blurred, leading to confusion about which solution is most suitable for a given challenge.

Empowering AI Initiatives with Governed Data

The global market for AI data management is projected to grow to $70B by 2026, driven by the increasing demand for AI solutions across industries. However, the success of AI initiatives depends largely on the quality and governance of data. Without high-quality, governed data, AI systems cannot function effectively, leading to unreliable outputs and potential ethical issues. This white paper explores the importance of data governance for AI initiatives, the challenges and opportunities in data management, and the strategic approaches and best practices for empowering AI with governed data. It also showcases the partnership between Paradigm Technology and Informatica, which provides organizations with the expertise and tools needed to harness the full potential of data for AI. By implementing robust data governance frameworks and leveraging advanced AI tools, organizations can ensure their AI projects are ethical, compliant, and effective, and achieve better outcomes and drive innovation.

The Value Black Hole of Application Rationalization | White Paper

Digital transformation and multi-cloud adoption are driving almost if not all organizations to rethink their application landscapes. In this Q&A session, the Paradigm team explores what application rationalization is, how to avoid the pitfalls, what success looks like, and how to get started.

Find & Subscribe to Cloud Data

Click here for the complete white paper: Find & Subscribe to Cloud Data Business Challenges & Snowflake Marketplace Value Snowflake, at its core, is a platform used by thousands of customers to mobilize their data: users bring all their data into one place and derive value from it. Customers can not only bring in their own first-party operational data but can augment it with other valuable data sources to enrich what they already own. Snowflake Marketplace was built to help companies discover and directly access data that originates outside their organization.

ESG 411: The ESG Data Challenge

By Liam Varn, Director Click here for the complete white paper – ESG 411: The ESG Data Challenge For those fresh to the concept, ESG is an opportunity to quantify the performance or risk of companies along the lines of Environmental, Social, and Governance factors. Investors are increasingly applying these non-financial factors to their analysis process and in turn placing pressure on those underlying companies to align their behavior accordingly. ESG metrics are not part of mandatory financial reporting, but most corporations disclose ESG data through sustainability reports or even as part of their annual financial reporting.

Lens into AI-Driven Self-Service

Azmath Pasha, Chief Digital Officer, Paradigm Technology Chris Gately, Chief Revenue Officer, Paradigm Technology
Michael Setticasi, VP of Strategic Partnerships, ThoughtSpot Click here for the complete white paper: Lens into AI-Driven Self-Service